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EXECUTIVE SUMMARY

“Soil pollution” refers to the presence in the soil of a chemical or substance out 
of place and/or present at a higher than normal concentration that has adverse 
effects on any non-targeted organism. Soil pollution often cannot be directly 
assessed or visually perceived, making it a hidden danger.

The Status of the World's Soil Resources Report (SWSR) identified soil pollution 
as one of the main soil threats affecting global soils and the ecosystems services 
provided by them.

Concerns about soil pollution are growing in every region. Recently, the United 
Nations Environmental Assembly (UNEA-3) adopted a resolution calling for 
accelerated actions and collaboration to address and manage soil pollution. 
This consensus, achieved by more than 170 countries, is a clear sign of the global 
relevance of soil pollution and of the willingness of these countries to develop 
concrete solutions to address the causes and impacts of this major threat.

The main anthropogenic sources of soil pollution are the chemicals used in or 
produced as byproducts of industrial activities, domestic, livestock and municipal 
wastes (including wastewater), agrochemicals, and petroleum-derived products. 
These chemicals are released to the environment accidentally, for example from 
oil spills or leaching from landfills, or intentionally, as is the case with the use of 
fertilizers and pesticides, irrigation with untreated wastewater, or land application 
of sewage sludge. Soil pollution also results from atmospheric deposition from 
smelting, transportation, spray drift from pesticide applications and incomplete 
combustion of many substances as well as radionuclide deposition from atmospheric 
weapons testing and nuclear accidents. New concerns are being raised about 
emerging pollutants such as pharmaceuticals, endocrine disruptors, hormones 
and toxins, among others, and biological pollutants, such as micropollutants in 
soils, which include bacteria and viruses.

Based on scientific evidence, soil pollution can severely degrade the major 
ecosystem services provided by soil. Soil pollution reduces food security by both 
reducing crop yields due to toxic levels of contaminants and by causing crops 
produced from polluted soils to be unsafe for consumption by animals and humans. 
Many contaminants (including major nutrients such as nitrogen and phosphorus) 
are transported from the soil to surface waters and ground water, causing great 
environmental harm through eutrophication and direct human health issues due 
to polluted drinking water. Pollutants also directly harm soil microorganisms and 
larger soil-dwelling organisms and hence affect soil biodiversity and the services 
provided by the affected organisms.

The results of scientific research demonstrate that soil pollution directly affects 
human health. Risks to human health arise from contamination from elements such 
as arsenic, lead, and cadmium, organic chemicals such as PCBs (polychlorinated 
biphenyls) and PAHs (polycyclic aromatic hydrocarbons), and pharmaceuticals such 
as antibiotics. The health risks associated with the widespread soil contamination 
by radionuclides from the Chernobyl disaster in 1986 are an enduring memory for 
many people.
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Remediation of polluted soils is essential, and research continues to develop novel, 
science-based remediation methods. Risk assessment approaches are similar 
worldwide and consist of a series of steps to be taken to identify and evaluate 
whether natural or human-made substances are responsible for polluting the 
soil, and the extent to which that pollution is posing a risk to the environment 
and to human health. Increasingly expensive physical remediation methods 
such as chemical inactivation or sequestration in landfills are being replaced by 
science-based biological methods such as enhanced microbial degradation or 
phytoremediation. 

FAO’s Revised World Soil Charter recommends that national governments implement 
regulations on soil pollution and limit the accumulation of contaminants beyond 
established levels in order to guarantee human health and wellbeing, a healthy 
environment and safe food. Governments are also urged to facilitate remediation of 
contaminated soils that exceed levels established to protect the health of humans 
and the environment. It is also essential to limit pollution from agricultural sources 
by the global implementation of sustainable soil management practices.

This book aims to summarise the state of the art of soil pollution, and to identify 
the main pollutants and their sources affecting human health and the environment, 
paying special attention to those pollutants that are present in agricultural systems 
and that reach humans through the food chain. It concludes with some case studies 
of the best available techniques for assessing and remediating contaminated soils.

This book has been developed within the framework of the Global Symposium on 
Soil Pollution (GSOP18), identifying the main gaps in knowledge on soil pollution 
worldwide and serving as a basis for future discussions.
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GLOSSARY

Contaminant: substance or agent present in the soil as a result of human activity 
(ISO, 2013).

Leaching: the dissolution and movement of dissolved substances by water (ISO, 
2013).

Parent material: The original material (mineral and/or organic) from which soil 
developed by pedogenetic processes.

Persistent organic pollutant (POP): Synthesized carbon-based compounds 
from agrochemicals and industrial products that generally biodegrade very poorly 
and most of which will bioaccumulate in tissues of organisms. Some pesticides 
are POPs, as are Polychlorinated dibenzodioxins (PCDDs), Polychlorinated 
dibenzofurans (PCDFs), Polychlorinated biphenyls (PCBs), and Polycyclic aromatic 
hydrocarbons (PAHs). 

Soil: the upper layer of the Earth’s crust transformed by weathering and physical/
chemical and biological processes. It is composed of mineral particles, organic 
matter, water, air and living organisms organized in genetic soil horizons (ISO, 2013).

Soil ecosystem functions: description of the significance of soils to humans 
and the environment. Examples are: (1) control of substance and energy cycles 
within ecosystems; (2) basis for the life of plants, animals and man; (3) basis for the 
stability of buildings and roads; (4) basis for agriculture and forestry; (5) carrier of 
genetic reservoir; (6) document of natural history; and (7) archaeological and paleo-
ecological document (ISO, 2013).

Soil health: the continued capacity of the soil to function as a vital living system, 
within ecosystem and land-use boundaries, to sustain biological productivity, 
promote the quality of air and water environments, and maintain plant, animal, 
and human health (Doran, Stamatiadis and Haberern, 2002).  

Soil ecosystem services: the capacity of natural processes and components to 
provide goods and services that satisfy human needs, directly or indirectly (Groot, 
1992). 

Food security: it is defined as the availability, access, utilization and stability of 
food supply.

Soil contamination: occurs when the concentration of a chemical or substance 
is higher than would occur naturally but is not necessarily causing harm (this 
volume). 

Soil pollution: refers to the presence of a chemical or substance out of place and/
or present at higher than normal concentration that has adverse effects on any 
non-targeted organism (this volume).
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3 | MANAGEMENT AND REMEDIATION OF POLLUTED 
SOILS
The first step in the assessment and management of polluted soils is the 
identification of the problem; in this case, the pollutions in the soil. In general, 
when an area is affected by an accident such as an oil spill, a nuclear accident, or 
the rupture of a dam tailing, measures to control the extent and prevent further 
occurrences generally start immediately. However, in legacy polluted soils or where 
diffuse pollution could be an issue, there are often no established protocols to be 
followed. In some countries or regions in the world, there are national, regional 
or local agencies who are responsible for initiating a preliminary investigation 
to determine whether or not pollution is present and whether further action is 
needed, while there are many others where no regulation or protocols have been 
defined (Teh et al., 2016). 

In the past, criteria for land reclamation were established using standards 
based on background concentration and safe limits. New approaches try to 
adopt a more comprehensive assessment of the risk that pollutants pose to the 
environment, humans and food safety. The characterization of the potential risk 
to the environment and human health is not an easy task, due to the complexity 
of the matrix, the lack of knowledge on the fate of contaminants in soil and the 
scarcely available information of toxicological and integrated studies (Cachada et al., 
2016). Exposure routes for these compartments modelled taking into consideration 
certain land-use types (e.g. residential, industrial, and recreational) (Provoost, Cornelis 
and Swartjes, 2006). 

3.1 | RISK ASSESSMENT APPROACHES

Assessing risks means that, based on scientific evidence, one can estimate the 
likelihood of a certain outcome and the gravity of that outcome, and use this 
knowledge to help in decision making. Uncertainties must be reduced when 
possible, and clearly the remaining uncertainties need to be clearly identified 
and explained (FAO, 2000). Risk management decisions for soils or sediments focus 
on identifying relevant pathways of exposure that pose a risk to human health or 
the environment and developing appropriate remedial measures. These could 
include treating or removing sources, or cutting off pathways, or both (Committee on 
Bioavailability of Contaminants in Soils and Sediments, 2002).

Risk assessment approaches (RAA) are similar worldwide and consist of a series 
of steps to be taken to identify and evaluate whether exogenous or indigenous 
substances have caused or are causing soil pollution, and to what extent that 
pollution is posing a risk to the environment and to human health (Figure 19). Risk 
assessment approaches are tools to enable science-based political and technical 
decisions and to take action when needed. Risk assessment tools often use a 
chemical-by-chemical approach, focusing on a single medium, a single source, and 
a single toxic endpoint, although integrated approaches are gaining popularity. 
Such approaches use models combining human exposure and effect-based 
environmental parameters, based on deterministic or probabilistic techniques (DEA, 
2010; Hope, 2006; Provoost, Cornelis and Swartjes, 2006). The end user is interested in whether 
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the soil is “fit for use,” mainly in industrial and urban sites where local and diffuse 
pollution may be present. In these cases, a site-specific approach is necessary to 
obtain an integrated overview of exposure and risk information (Posthuma et al., 2008) .

Exposure assessment Effect assessment

PROBLEM DEFINITION

RISK CHARACTERIZATION

Figure 19. The “universal risk assessment paradigm”. Source: Posthuma et al., 2008

Once there is a suspicion of pollution, and after preliminary research on the 
historical use of the site, an initial assessment should be carried out to define 
whether exogenous substances are present, which ones are present and whether 
they pose any risk to the environment and human health. If pollution is 
confirmed and remediation measures are necessary, a detailed investigation must 
be accomplished to determine the extent and possible remediation measures. 
Risk management and/or remediation strategies are subsequently defined and 
implemented. After-clean-up measures are essential to confirm that the risk has 
been reduced and that the source of pollution has been controlled.

Worldwide, policies and regulation are based on RAA to forecast risks that cannot 
be directly measured (Hough, 2007). Regulations include guidelines to identify 
and assess soil pollution using soil quality standards, in many cases considering 
national characteristic of soils or site-specific conditions. Because RAA are complex 
and time-consuming processes, however, not every country in the world can afford 
to investigate pollution. This is also because no comprehensive information is 
available, and approaches on a site basis are frequently adopted. As Hope has 
pointed out, accessing documentation about ecological risk assessment and its 
regulatory uses is complex, especially in developing countries (Hope, 2006). In those 
cases, the United States Environmental Protection Agency (US EPA, 1986), Canadian 
guidelines (Canadian Council of Ministers of the Environment, 1999), and Netherlands guidelines 
(Brand, Otte and Lijzen, 2007) among others may be used as a reference, even though 
the characteristics of climate, soil or the local populations are not the same (Li et al., 
2014). Some international efforts, such as the one proposed by FAO (FAO, 2000), which 
provides guidelines to assess the environmental and human health risk posed 
by stock of obsolete pesticides with more detailed information on the steps of 
assessment in Environmental Management ToolKit (Volume5), or the guidelines for 
Integrated Risk Assessment developed by several international organizations (IAEA, 
1998; Meek et al., 2011; WHO, 2001a) are attempts to provide an integrated multichemical, 
multimedia, multiroute, and multispecies exposures analysis. 

It is widely recognized that an integrative approach that includes complex mixtures 
of pollutants is needed to develop more precise risk assessment tools and a better 
understanding of the potential impacts and their extent (Reeves et al., 2001). Albert 
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launched the question “Is it possible to predict toxicity of complex mixtures?” more 
than 30 years ago (Albert, 1987). Since then, many researchers have tried to come up 
with a suitable solution or at least a more comprehensive study of interactions in 
complex mixtures, to determine whether additive, synergistic or antagonistic toxic 
effects occur when pollutant mixtures are present (Chen et al., 2015). The specificity 
and great variability of pollutant mixtures present in each site, which depend 
on industrial operations or processes carried out, slow down the progress on the 
definition of limit values appropriate for a general risk assessment approach (Callahan 
and Sexton, 2007). The Dutch approach, among others, includes a protocol to analyze 
the risk when more than one substance is present (Cachada et al., 2016). Normally, a 
cumulative calculation is used, considering the individual risk and the sum across 
the potential toxicity and risk, but it does not consider possible interactions and 
synergies between substances that may attenuate or increase their potential risk 
(Callahan and Sexton, 2007). Chen et al. found that the more complex the mixtures of 
pollutants, the greater the synergistic toxicity (Chen et al., 2015). They suggest that the 
use of a Combination Index (CI) is more accurate to estimate the ecotoxicological 
risk than the conventional concentration addition (CA) or independent action (IA) 
models (Figure 20), not only in aquatic environments (Rosal et al., 2010) but also in soils 
(González-Naranjo and Boltes, 2014; González-Naranjo et al., 2015). The synergistic/antagonistic 
effect has been confirmed not only for a combination of pesticides (Yang et al., 2017a) 
but also in other complex mixtures, such as the pollutant mixture found in landfills 
(Baderna et al., 2011) or in railway tracks. In the latter case, Wierzbicka et al. found 
highly toxic effects of the pollutant mixture on numerous test organisms from 
different trophic levels, even though the single concentration of each pollutant did 
not exceed admissible values (Wierzbicka, Bemowska-Kałabun and Gworek, 2015). However, 
as explained in Sarigiannis and Hansen, combined toxicology approaches have 
limited applicability under specific conditions, and data cannot be generalized 
(Sarigiannis and Hansen, 2012).

CHEMICAL
STRESSORS

PHYSICAL, BIOLOGICAL
AND OTHER STRESSOR

COMBINATION TOXICOLOGY SUBSTANCE BY 
SUBSTANCE

TOXICOLOGY
ADDITIVITYINTERACTION

DOSE OR 
CONC. 
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EFFECT 
ADDITION
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Figure 20. Risk assessment approaches based on independent action of substance by substance, additivity of doses and effects or 
considering interactions for the combined model. Source: Sarigiannis and Hansen, 2012
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The sequence of steps to deal with polluted sites described above is a general one, 
and depending on national or regional approaches some steps may be omitted or 
others may be added (Contaminated Sites Management Working Group, 1999; DEA, 2010; FOEN, 
2013; Luque, 2014). 

Human health risk assessment (HHRA) can be conducted in different ways and 
for the purpose of meeting different objectives. This approach can be used for the 
following:

• derivation of soil quality standards

• site-specific risk assessment

• development of remediation objectives

• ranking of contaminated sites by priority of intervention. 

Soil screening values (SSVs) are generic soil quality standards based on generic 
exposure pathways and scenarios (e.g. inhalation of vapours in residential or 
industrial areas) adopted in many countries to regulate the management of polluted 
soils.  Soil screening values or soil quality standards are identified by different 
terms around the world: trigger values, reference values, target values, intervention 
values, cleanup values, cut-off values and others (Carlon et al., 2007; Swartjes et al., 2012). 
Furthermore, the threshold values are based on different national strategies in 
environmental policies and rarely take soil properties into account. 

In cases of soil pollution by heavy metals, total metal concentration provides 
little information on the potential risk (Naidu et al., 2015). It is important to identify 
the available and unavailable forms of the heavy metals to ensure that the soil is 
managed in such a way as to prevent the unavailable forms from becoming available. 
This can be done by using biological tests to determine the bioavailability and 
toxicity of metal(loid)s (Romero-Freire, Martin Peinado and van Gestel, 2015). In this case, soil 
quality standards or threshold values must be corrected, taking into account soil 
properties such as pH, soil texture and organic matter content, because it has been 
widely demonstrated that in many cases quality standards that do not consider soil 
properties under- or overestimate the actual risk (Appel and Ma, 2002; Bradl, 2004; Rodrigues 
et al., 2012; Romero-Freire, Martin Peinado and van Gestel, 2015). In addition, by analyzing and 
including bioavailability during risk assessment instead of assuming that the target 
pollutants are 100 percent bioavailable, remediation efforts will be optimized and 
enhance profitability of the remediation efforts (Naidu et al., 2015; Romero-Freire, Martin 
Peinado and van Gestel, 2015). 



It is therefore crucial to develop regulations and legislation to certify the quality of 
food depending on its heavy metal content. The international literature contains 
multiple methodologies and evaluation criteria that identify permissible heavy 
metal values for soils that differ in magnitude (Table 7). This is generally due to the 
criteria considered for their establishment (Muñiz, 2008). The obtaining of reference 
values for soil quality in terms of heavy metal content has been established in 
many countries, which developed their respective environmental policies for soil 
protection and food safety assurance. The one developed by USEPA (US EPA, 1998, 
2014a) is especially important because several other countries follow it. These 
standards are based on risk assessment policies and define background levels and 
the study of human and environmental toxicity. When it comes to food, the FAO 
Codex Standard is of major importance. It defines the values for contaminants and 
toxins (including heavy metals) permissible in food products, and it is constantly 
being reviewed and updated (WHO and FAO, 1995).

Kitt KS on Pixabay
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Table 7. Threshold values of some heavy metals for residential land-use for various countries. 
Modified from Provoost, Cornelis and Swartjes, 2006
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Arsenic 110 37 50 20 20 15 55 2 -- 15 100 500 12 309 2 N.A. 22

Cadmium 6 20 20 810 30 1 12 4 1-3 0.4 20 140 10 0.43 3 20 37

Chromium III 300 13011 400 130 200 75 380 -- 100-150 120 10012 50012 64 58.9 25 N.A. 100000

Copper 400 190 N.A. N.A. N.A. 30 190 150 50-210 100 7000 30000 63 31.7 100 100013 3100

Mercury 15 7 20 8 8 0.5 10 -- 1-1.5 1 200 600 6.6 -- 1 N.A. 2314

Lead 700 400 400 450 450 100 530 100 50-300 80 30015 120013 140 37.5 60 100016 400

Nickel 470 140 140 50 75 40 210 -- 30-112 35 400 900 50 27.5 50 N.A. 1600
Zinc 1000 9000 N.A. N.A. N.A. 200 720 300 150-450 350 8000 60000 200 117.7 100 200017 23000

1  Soil Remediation Decree named Vlarebo from July 8, 2002

2  Standards applicable as national legislation for ‘wirkungspad Boden-Mensch’ (exposure path soil – humans) 

3  Residential area with vegetable garden

4  Residential area without vegetable garden

5  Hungarian Governmental regulation number 10/2000

6  Polish soil quality standards for the top soil layer (0-30 cm), established for the group B of land use (agricultural lands, forest, residential and 
recreational areas) Regulation 2002

7  Royal Decree 1310/1990 of 29 October 1990 regulating the use of sewage sludge in agriculture. (B. O. E. No. 262, November 1,1990). Values for 
soils with pH lower or higher than 7.

8  GUIDELINE ON Investigation Levels for Soil and Groundwater. National Environment Protection (Assessment of Site Contamination) Measure as 
varied 2011.

9  SEPA (1995) Environmental quality standards for soils. State Environmental Protection Administration, China, GB 15618-1995

10  1/2/8 mg/kg dm related to the soil clean-up standards at pH 6, 7, 8, respectively. The clean-up standard of 8 mg/kg dm was used in this 
comparison.

11  Chromium total

12  Chromium (VI)

13  1000/4 related to the soil clean-up standard as total concentration and soluble concentration. The clean-up standard of 1000 mg/kg dm was 
used in this comparison.

14  23/6.1 describes the chlorinated mercury and organic-mercury. The clean-up standard of 23 mg/kg dm was used in this comparison.

15  HIL for lead based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has 
been considered)

16  1000/0.1 related to the soil clean-up standard as total concentration and soluble concentration. The clean-up standard of 1000 mg/kg dm 
was used in this comparison.

17  2000/5 related to the soil clean-up standard as total concentration and soluble concentration. The clean-up standard of 2000 mg/kg dm was 
used in this comparison.
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Arsenic 110 37 50 20 20 15 55 2 -- 15 100 500 12 309 2 N.A. 22

Cadmium 6 20 20 810 30 1 12 4 1-3 0.4 20 140 10 0.43 3 20 37

Chromium III 300 13011 400 130 200 75 380 -- 100-150 120 10012 50012 64 58.9 25 N.A. 100000

Copper 400 190 N.A. N.A. N.A. 30 190 150 50-210 100 7000 30000 63 31.7 100 100013 3100

Mercury 15 7 20 8 8 0.5 10 -- 1-1.5 1 200 600 6.6 -- 1 N.A. 2314

Lead 700 400 400 450 450 100 530 100 50-300 80 30015 120013 140 37.5 60 100016 400

Nickel 470 140 140 50 75 40 210 -- 30-112 35 400 900 50 27.5 50 N.A. 1600
Zinc 1000 9000 N.A. N.A. N.A. 200 720 300 150-450 350 8000 60000 200 117.7 100 200017 23000
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3.2 | MAIN TECHNIQUES FOR REMEDIATING POLLUTED SITES

Nathanail referred to sustainable remediation as “remediation that eliminates and/
or controls unacceptable risks in a safe and timely manner, and which maximizes 
the overall environmental, social and economic benefits of the remediation work” 
(Nathanail, 2011). Sustainable management requires the incorporation of the best 
available techniques, not only during the remediation process itself, but for the 
whole process, including risk assessment and risk reduction. Best management 
practices (BMPs) are individual or combinations of management, cultural and 
structural practices that researchers (academic or governmental) have identified 
as the most effective and economical way of reducing damage to the environment 
(Cestti, Srivastava and Jung, 2003). Remediation is commonly done on a site-by-site basis, 
since for every combination of pollutant, soil property, land use, property and 
liability regimes and technical and economic reality of the site or area, a different 
technique or combination of techniques may be more appropriate (Swartjes, 2011).

Remediation techniques can be divided in two main groups: in situ (on the site) and 
ex situ (removal of contaminated soil for treatment off the site) remediation. Available 
remediation options include physical, chemical and biological treatments, and 
these options offer potential technical solutions to most soil pollution (Scullion, 2006). 
For both in situ and ex situ, the net effect on the contaminants can be categorized 
as reducing the concentration, reducing the bioavailability without reducing the 
concentration, encapsulating in an inert matrix, containment, and removal (Pierzynski, 
Sims and Vance, 2005). The management of polluted sites is a site-specific approach that 
includes characterization, risk assessment and remediation technologies selection, 
and therefore is mainly focused on local or point-source contamination. 

Scullion presented a review of the main treatment approaches to remediate 
polluted soils and their effect on pollutants (Scullion, 2006), specifying whether 
they are degraded, separated from soil components, extracted from the matrix or 
stabilized (Table 8).

Table 8. Main remediation methodologies and their effects on soil pollutants (√ = main process, (√) = subsidiary process limited 
in extent or in the range of pollutants affected). Source: Scullion, 2006

Process treatment   Destruction/ 
degradation 

Solid 
separation

Extraction/ 
loss Stabilisation

Physical remediation methodologies

Thermal √ √

Solidification  (√) √

Vapour extraction √

Air sparging  (√) √

Washing/pump and treat  (√) √

Electroremediation  (√) √

Particle sorting √

Chemical remediation methodologies

Oxidation  √ √ √
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Process treatment   Destruction/ 
degradation 

Solid 
separation

Extraction/ 
loss Stabilisation

Reduction (√) √ √

Hydrolysis √ √

Solubilisation (√) √

Dechlorination (√) 

pH manipulation (√) √ √

Biological remediation methodologies

Microbial activity

Landfarming √ (√) √

Biopiling √ (√) √

Composting √ (√) √

Bioreactor √ (√) 

Bioleaching √

Plant activity 

Phytostabilisation (√) (√) √

Phytoextraction (√) √ (√) 

Phytodegradation √ (√) (√) 

What makes many of the currently available physical methods so expensive is 
partially the cost of excavating and transporting large quantities of contaminated 
materials for ex situ treatment such as chemical inactivation or thermal degradation. 
The high cost has led to an increasing interest in alternative technologies for in situ 
applications, in particular those based on the biological remediation capability of 
plants and microorganisms (Chaudhry et al., 2005). Bioremediation is a technology that 
destroys or renders harmless various contaminants, using the biological activity of 
certain microorganisms. Bioremediation actually relies on the microbial growth 
and activity; its effectiveness is highly dependent on the applied environmental 
parameters that influence the microbial growth and the degradation rate. 
Bioremediation is considered a very promising technology with great potential 
when dealing with certain types of contaminated sites (Zouboulis, Moussas and Nriagu, 
2011). Bioremediation has been used worldwide, including in Europe, with varying 
success (Zouboulis, Moussas and Nriagu, 2011). 

According to Alexander, several conditions must be satisfied for bioremediation 
by microbial activity to take place in the soil (Alexander, 1999). These include the 
following: 1) the organism must be present in the soil containing the pesticide; 2) 
an organism must have the necessary enzymes to bring about the biodegradation; 
3) the pesticide must be accessible to the organism having the requisite enzymes; 
4) if the initial enzyme bringing about degradation is extracellular, the bonds acted 
upon by that enzyme must be exposed for the catalyst to function; 5) should the 
enzymes catalyzing the initial degradation be intracellular, that molecule must 
penetrate the surface of the cell to the internal sites where the enzyme acts; and 6) 
because the population or biomass of bacteria or fungi acting on many synthetic 
compounds is initially small, conditions in the soil must be conducive to allow 
proliferation of the potentially active microorganisms. 
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Compost made from sawdust, wood chips, bark, straw, plant waste and food waste 
from households is another common source of organic matter to be added to the 
soil (Kuo et al., 2004). Addition of organic matter to the soil may help to decrease the 
mobility of heavy metals and other pollutants (Grobelak and Napora, 2015; Wuana and 
Okieimen, 2011), reducing the risk to the environment and to human health. 

The addition of manure and sewage sludge can be an effective bioremediation 
tool, but care needs to be taken to ensure that effective pre-treatment of the organic 
material has occurred. To attenuate the negative impacts associated with livestock 
manure, simple techniques such as composting can be applied before their 
application to the land (Zhang et al., 2015a). Compared to fresh manure, composted 
manure generally has higher contents of lignin and polyphenol, which reduces 
CH4 emission while further enhancing the potential of SOC sequestration (Xia, Wang 
and Yan, 2014). Lv et al. observed a positive effect of worms present in the composting 
process, resulting in the stabilization of heavy metals present in animal manure (Lv, 
Xing and Yang, 2016). The composting of fresh manure has been proven as an effective 
method for reducing various types of environmental pathogens and antimicrobial 
resistant bacteria (Cole, 2015; Holman et al., 2016). Storing slurries for one to three months, 
composting at high temperatures, spreading in a manner that reduces potential 
volatilization and avoiding long-distance transport of manure are some of the 
recommendations proposed by Nicholson et al. in order to reduce pathogen levels 
in manure and slurries prior their land application (Nicholson et al., 2003). Despite the 
observed persistence of certain antibiotics in soil and their negligible mineralization 
due to strong sorption to soil components, several authors highlight the importance 
of storage time and composting for dissipation of antibiotic compounds in manure 
before land application (Arikan, Mulbry and Rice, 2009; Halling-Sørensen et al., 2001; Kim et al., 
2011; Tien et al., 2017).

The planting of trees that have good resistance to high levels of toxic substances 
and a high capacity to collect and store pollutants can also be a good practice for 
bioremediation process in soils (Paz-Alberto and Sigua, 2013). According to Wisłocka et 
al., the most popular trees exhibiting a high capacity to accumulate heavy metals 
are silver birch (Betula pendula), alder (Alnus tenuifolia), black locust (Robinia 
pseudoacacia), willow (Salix sp.), and conifer trees (Wislocka et al., 2006). Selected energy 
crops such as Miscanthus giganteus have excellent adaptability to change habitat 
conditions, the possibility to gradually reclaim degraded lands, and the ability to 
prevent the migration of heavy metals into the soil and groundwater. 
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Figure 21. Factors affecting field-scale remediation of PAH-polluted soils. Source: Kuppusamy et al., 2017
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Interest in biochar is also growing among scientists, who are particularly interested 
in how the chemical and physical properties of biochar particles affect water 
moving through soil, remove pollutants, alter microbial communities and reduce 
emissions of greenhouse gases. The hope is that biochar can help farmers around 
the world, particularly those in developing regions who often struggle with poor 
soils. Biochar has ancient roots. Hundreds to thousands of years ago, residents of 
the Amazon produced it by heating organic matter to create rich, fertile soils called 
terra preta. The practice was abandoned around the time that European nations 
invaded South America, and relatively few farmers elsewhere have routinely 
used biochar. Scientists first took an interest in the material about a decade ago, 
when growing concerns over global warming led some to tout biochar as a way to 
store huge amounts of carbon underground. Hope for that application has faded 
somewhat due to the high cost of biochar, but soil scientists are now exploring its 
use in agriculture and in remediating soil pollution (Cernansky, 2015).

New technologies for remediation involve the application of nanoparticles 
for remediating polluted soils (Pan and Xing, 2012). The most widely recognized 
nanotechnology in soil remediation is the application of nano-zero-valent 
iron (nZVI) for reducing the impact of both organic and inorganic pollutants. 
For example, nZVI can effectively degrade chlorinated hydrocarbons and 
organochlorine pesticides (Singh et al., 2011; Zhanqiang, 2010). Carbon nanotubes have 
been demonstrated to be a feasible remediation material because of their large 
sorption capacity for metal ions (Rao, Lu and Su, 2007), radionuclides (Ren et al., 2011) and 
organic compounds (Pan and Xing, 2008).

Integrated approaches and emerging technologies, such as electrokinetic 
remediation, enzyme-mediated bioremediation, multi-process phytoremediation 
and vermiremediation have been employed in the treatment of PAH-contaminated 
soils (Kuppusamy et al., 2016). The selection of the best available techniques and 
their success in remediating polluted soils will depend on physical, economical, 
regulatory and technical factors (Figure 21) (Kuppusamy et al., 2017).

The critical factor affecting remediation of PCBs, PAHs and PBDEs is the strong 
sorption of these molecules on soil and sediments, as demonstrated by their long 
persistence despite heavy restrictions on their use for over 30 years. The ability 
to desorb these contaminants determines, in most cases, the effectiveness of 
remediation technologies (Gomes, Dias-Ferreira and Ribeiro, 2013). The most commonly 
used remediation technique for these polluted soils is “dig-and-dump,” but this is 
not sustainable. Other techniques such as bioremediation, thermal desorption, and 
anaerobic dechlorination have been tested in recent years with good results (Gomes, 
Dias-Ferreira and Ribeiro, 2013). The technologies previously described, although aiming 
to destroy or transform PCB, operate in very different ways and consequently have 
different clean-up times, costs, breakdown products and environmental impacts. 
Their effectiveness is also site-specific, since each technology depends on the 
contaminants, the aging of the contamination, the type of soil and geomorphologic 
conditions, and other environmental factors such as mobility of the contaminants 
or sorption to soil particles (Gomes, Dias-Ferreira and Ribeiro, 2013; Wang and He, 2013).
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3.3 | CHANGES IN AGRONOMIC PRACTICES TO MINIMISE FOOD-CHAIN  
CONTAMINATION AND IMPACTS ON ECOSYSTEM SERVICES

The Voluntary Guidelines for Sustainable Soil Management (VGSSM) aim to 
provide countries, farmers and other stakeholders with generally accepted, 
practically proven and scientifically based principles to promote sustainable 
soil management (SSM) (FAO, 2017). These guidelines describe SSM as follows: 
"Soil management is sustainable if the supporting, provisioning, regulating, and 
cultural services provided by soil are maintained or enhanced without significantly 
impairing either the soil functions that enable those services or biodiversity."  SSM 
are related to the agronomic practices cited in this chapter. (FAO, 2017. Voluntary Guidelines 
for Sustainable Soil Management. Food and Agriculture Organization of the United Nations. Rome, Italy).

3.3.1 | FERTILIZERS

Integrated crop management (ICM) is a method of farming that balances the 
requirements of running a profitable business with responsibility and sensitivity 
to the environment. It presents a realistic solution to many of the problems facing 
agriculture. It includes practices that can be used to avoid waste, enhance energy 
efficiency and minimise pollution. Integrated crop management combines the best 
of modern technology with some basic principles of good farming practice and is a 
whole-farm, long-term strategy (EC, 2002).

Components of ICM for field crops are as follows: 

1- Quantify nutrient source: soil reserve, manure, crop residue ;

2- Soil test: pH, lime requirement, phosphorus, potassium (calcium and 
magnesium optional);

3- Manure analysis: nitrogen (ammonium N, total N), phosphorus, 
potassium;

4- Calibration of manure and fertilizer spreaders: tonnes, 1000’s gallons, 
lbs. per acre;

5- Fertilization plan: manure application rate, supplemental fertilizer; 
utilize excess manure on alternative crops (hay crops); avoid applying 
large amounts of manure on fields with excessive P found using soil 
tests; do not over apply nitrogen from manure or fertilizer, and nitrogen 
soil test: side- or top-dressing supplemental nitrogen fertilizer;

6- Cover crop: to reduce soil loss and nitrate leaching; consider a legume-
based cover crop on vegetable farms and on distant fields on dairy 
farms where manure is not spread;

7- Planting plan: to ensure early harvest of crops to allow early cover crop 
planting on most erosion prone fields; and

8- Minimum tillage: to reduce nutrient loss through soil erosion.
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Integrated Soil Fertility Management is an approach based on the following 
principles: 1) Neither practices based solely on mineral fertilizers nor solely on 
organic matter management are sufficient for sustainable agricultural production; 
2) well-adapted, disease- and pest-resistant germplasm is necessary to make 
efficient use of available nutrients; and 3) good agronomic practices – in terms of 
planting dates, planting densities, and weeding – are essential for ensuring the 
efficient use of scarce nutrient resources (CGIAR and CCAFS, 2018). There is also a need to 
target nutrient resources within crop rotation cycles, preferably including legumes, 
thus going beyond recommendations for single crops. 

Integrated nutrient management can play a role in improving plant growth. Dry 
matter partitioning and total crop biomass (Amanullah and Inamullah, 2016; Amanullah 
et al., 2016), including root biomass (Amanullah and Stewart, 2013), have a significant 
impact on the efficiency of phytoremediation processes of degraded soils (Grobelak, 
2016). Maintaining organic carbon-rich soils, restoring and improving degraded 
agricultural lands and, in general terms, increasing the soil carbon content all 
play an important role in addressing the three-fold challenge of food security, 
adaptation of food systems and people to climate change, and the mitigation of 
anthropogenic emissions (UNFCCC, 2015). 

Bio-fertilizers, products containing living cells of different types of beneficial 
microbes (bacteria, fungi, protozoa, algae and viruses), are known to play a number 
of vital roles in soil fertility, crop productivity and profitability. Some of the more 
commonly used beneficial microbes in agriculture include Rhizobia, Mycorrhizae, 
Azospirillum, Bacillus, Pseudomonas, Trichoderma, and Streptomyces species. Beneficial 
microbes are essential for decomposing organic matter in the soil and for increasing 
the availability of essential macro-nutrients (nitrogen, phosphorus, potassium, 
sulfur, calcium and magnesium) and micro-nutrients (boron, copper, chlorine, 
iron, manganese, molybdenum and zinc) to crop plants. Beneficial microbes also 
play a significant role in solid waste and sewage management. Beneficial microbes 
increase plant tolerance to different environmental stresses (e.g. drought, heat, cold, 
salinity) and increase plant resistance to insects and disease. Beneficial microbes 
not only improve crop growth and productivity by increasing photosynthesis and 
producing hormones and enzymes, but also improve crop quality by controlling 
different insects and various plant diseases. Beneficial microbes reduce the need for 
the use of chemical fertilizers and thereby reduce environmental pollution caused 
by chemical fertilizers. They reduce the cost of production and therefore increase 
the grower’s income and profitability. Beneficial microbes are very important in 
increasing crop productivity, profitability and sustainability. Applications of organic 
manures such as animal manure, poultry manure, green manure, composts, farm 
yard manure, biochar, and ash increase the beneficial microbes in the soil and 
improve soil health and overall sustainability (Amanullah, 2015).

3.3.2 | PESTICIDES

For achieving a pollution-free world, the Voluntary Guidelines for Sustainable 
Soil Management (FAO, 2017), which include integrated or organic pest management 
practices, are recommended worldwide. 

Integrated pest management (IPM) is an approach based on prevention, 
monitoring, and control that offers the opportunity to eliminate or drastically 
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reduce the use of pesticides, and thus reduce the risks of pesticide to human 
health and the environment. Integrated pest management does this by utilizing 
a variety of methods and techniques, including cultural, biological and structural 
strategies to control a multitude of pest problems (Beyond Pesticides, 2018). Moreover, 
IPM encourages the use of crop rotations, which can considerably lower the need 
for pesticides (García-Préchac et al., 2004).

In intensive agroecosystems, the most common practice of using pesticides is the 
spray application, although other application systems like seed treatment, granules 
applied on the ground or soil drenching as well as soil fumigation. Up to 30–50 
percent of the amount applied is lost by deposition on the ground, via spray drift 
to neighboring environmental compartments, or volatilized, not reaching the 
target pest (Diaconu et al., 2017; Viret et al., 2003). The “polluter pays” principle (adding 
the environmental and public health costs to the price paid by consumers) can be 
an effective approach to internalizing the social costs of pesticide use. The fees and 
taxes generated can be used to promote improved (sustainable) pest management 
(Popp, Pető and Nagy, 2013). Controlling the misuse of pesticides along with promoting 
more environmentally-friendly techniques, such as biological pest control (Popp, Petń 
and Nagy, 2013), can contribute to reducing contamination in agricultural fields.

Integrated weed management (IWM) is the control of weeds through a long-term 
management approach, using several weed management techniques such as 
physical control, chemical control, biological control and cultural control.

As noted in earlier sections, the most widespread type of contamination of 
soils that could adversely affect food quality is related to metals, metalloids and 
radionuclides. This has contributed to a wealth of studies examining agricultural 
practices to reduce food-chain contamination by these pollutants. As pollution of 
soils by organic chemicals is generally more restricted in areal extent, much less 
research has been conducted on these chemicals and they are not considered 
further here.  

3.3.3 | METALS

Cadmium (Cd) is the most widely studied metal in terms of food-chain 
contamination, and there are a number of options to minimise plant uptake of 
Cd from soil (Grant et al., 1999). They are summarised in Table 9 and can be grouped 
into manipulation of crops (species, cultivar and rotation), of soil conditions and of 
water (irrigation) attributes.  

Table 9. Agronomic management practices to reduce food-chain contamination by Cd.

Crop manipulation Soil manipulation Water manipulation

Plant species Site selection Use low (Cl) salinity water

Plant cultivar Cultivation (dilution/burial)

Crop rotation Lime addition

Phytoextraction Zinc addition

Sorbent addition
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It has been known for over 40 years that different species vary in their ability 
to accumulate Cd in edible portions.  Leafy vegetables, for example, generally 
accumulate higher concentrations of Cd than do grain or fruit crops (Bingham et al., 
1975; Chaney and Hornick, 1977). Farmers have the option to change the type of crops 
grown in a specific plot of land if the soil is Cd polluted. If this is not a possibility, 
it is still possible to grow the same crop species if a lower-accumulating Cd cultivar 
is chosen. It is well known that different cultivars of the same species accumulate 
Cd at different rates, and this may be related to different rooting patterns, different 
root uptake of Cd, or different patterns of Cd translocation within the plant (Grant 
et al., 2008). Commercialisation of specially bred low-Cd-accumulating cultivars has 
ensued in some countries (Clarke et al., 1997), while in others, farmers can choose a 
low-Cd cultivar from the commercially available ones (where this information is 
accessible).  Food-chain contamination by Cd can also be minimised by selecting 
an appropriate crop rotation plan: there is evidence that certain sequences of 
crops (e.g. wheat grown after lupin crops) (Oliver et al., 1993) may encourage more Cd 
accumulation, although the reasons for this are not clear and may be related to 
the modification of soil chemical or physical conditions (e.g. changes in soil pH).  
Finally, farmers may also choose to grow a crop to extract available Cd from the 
soil (phytoextraction) and dispose of the plant material before growing a food crop 
(Murakami et al., 2009). This strategy is now maturing to the stage of being practically 
possible (Abe et al., 2017).

Selection or manipulation of soil chemical and physical conditions is also practised 
by farmers to minimise food-chain accumulation of Cd. Selection of soil conditions 
is effected through site selection (if possible); soils higher in pH, clay, organic 
matter, zinc (Zn) and lower in Cd are more likely to have minimal accumulation of 
Cd in crops (Grant et al., 1999). If site selection is not possible, soil manipulation may 
be attempted. As Cd is a cationic metal, the addition of lime to raise soil pH and 
increase the cation-exchange capacity of soil can be used to increase soil sorption 
and reduce crop uptake, although effects are not consistent in field studies. Acting 
through similar mechanisms, sorbents can be added to soils to bind Cd more 
strongly and minimise its uptake by crops (Komárek, Vaněk and Ettler, 2013; Tang et al., 2016), 
although high application rates are usually needed (tonnes per hectare) and the 
longevity of the remediation is unknown. The addition of Zn has also been shown 
to reduce crop Cd concentrations (Oliver et al., 1994) through a competitive uptake 
of Zn over Cd for loading into edible portions (Welch et al., 1999). Finally, if the Cd 
contamination is anthropogenic and not geogenic, it is likely that contamination is 
restricted to the surface soil layer. As for many contaminants, cultivation and burial 
or dilution of the contaminated layer can reduce Cd uptake by crops, as most crop 
roots are active only in the top 10–20 cm of soil. 

Avoidance of irrigation waters rich in Cl will also reduce food chain contamination 
by Cd, due to chloro-complexation of the Cd2+ ion that increases mobility in soil 
and hence increases plant Cd uptake (McLaughlin et al., 1994). 
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3.3.4 | METALLOIDS

Arsenic (As) is the most widespread and serious metalloid pollutant in agricultural 
soils, with geogenic sources being more widespread than anthropogenic sources 
(Bhattacharya et al., 2007). Food-chain contamination by As occurs principally in flooded 
rice-based cropping systems, where the low redox conditions in flooded paddy soils 
mobilizes As by solubilising iron-oxide minerals that bind to As, and also reducing 
the arsenate ion to arsenite, which is more mobile in soil than arsenate (Hamon et al., 
2004). Due to these soil chemical reactions and root uptake pathways, accumulation 
of As in rice can be minimised through careful water management (raised beds, 
mid-season drainage or dryland cultivation) to increase soil redox (Hu et al., 2013) and 
the addition of Si fertilizers. However, the disadvantage of aerobic rice cultivation 
is that Cd accumulation may be increased compared to flooded rice cultivation (Hu 
et al., 2013). Cultivar differences can also be exploited to reduce As in harvested rice 
grain (Norton et al., 2009).   

3.3.5 | RADIONUCLIDES

Agronomic practices to reduce accumulation of radionuclides in the food chain 
are derived principally from research surrounding the Chernobyl, Goiȃnia and 
Fukushima nuclear accidents (Fesenko et al., 2017). The main isotopes of concern 
are 131I in the early period following the contamination event, and caesium and 
strontium isotopes (134Cs, 137Cs and 90Sr) for many years after contamination. 
Iodine-131 is a short-lived isotope (half-life 8.02 days) and the main risk pathway 
is the forage-cow-milk-human chain.  Hence the main agricultural management 
practices needed immediately following a contamination event with 131I are to 
restrict access of animals to contaminated pastures, by feeding them from sources 
outside of the zone of contamination (if possible). For the radioisotopes of Cs 
and Sr, being cationic, remediation measures are similar to those for Cd where 
differences in crop species and cultivar, use of sorbents with high CEC, liming and 
fertilizer management can be employed (Fesenko et al., 2007).  For Cs, potassium-based 
fertilizers are particularly effective in reducing uptake by plants due to competition 
of K+ with Cs+ for root uptake (Shaw, 1993), while calcium-based amendments are 
effective for 90Sr (Nisbet et al., 1993). Ammonium-based fertilizers should be avoided as 
they may enhance uptake of 37Cs and 90Sr (Guillén et al., 2017). Soil inversion/ploughing 
or soil removal may also be used to dilute or reduce isotope concentrations in soil 
and/or to bury the surface contamination into deeper layers (Fesenko et al., 2017). 
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4 | CASE STUDIES ON SOIL POLLUTION 
AND REMEDIATION

4.1 | REMEDIATION BY ENHANCED NATURAL ATTENUATION OF POL 
POLLUTED SITES IN UN FIELD MISSIONS: A CASE STUDY ON THE UNITED 
NATIONS OPERATION IN CÔTE D’IVOIRE (ONUCI)18

The consumption of petroleum oil and lubricants (POL) in field missions is 
inevitable due to their use in generating electricity and operating mechanical 
equipment to support peacekeeping operations. Through these processes, which 
have a major environmental footprint, the potential of soil contamination arises. 
This section presents a case study of remediation work conducted by Global Service 
Centre/Environmental Technical Support Unit on POL polluted sites during the 
liquidation of a United Nations field operation in Côte d’Ivoire (ONUCI).  

The goal of the project was to reduce the level of total petroleum hydrocarbon 
(TPH) in polluted soil (36 000 to 75 000 mg/kg) to a background TPH level of 400 
to 1 000 mg/kg, providing an enabling environment for revegetation of plants. The 
project entailed the removal of over 1 200 tonnes of POL contaminated soil from 
sites and replacing it with fresh soil. The excavated contaminated soil was treated 
using naturally occurring materials derived locally. 

The contaminated soil was deposited in a large concrete mixer to tumble and 
aerate in order to promote microbial growth and the breaking down of POL. 
Two ingredients (poultry waste and naturally occurring surface active materials 
(NOSAM) or palm ash soap (also known as black soap)) were added to the mix to 
improve the condition of the soil and to accelerate the microbial remediation.

The result showed a reduction of over 95 percent in TPH levels immediately after 
remediation, with natural microbial activities ensuring more reduction in TPH 
within a 14-day period. Native grasses were planted in the restored areas. The case 
study highlights the importance of implementing low cost remediation techniques 
in mitigating POL polluted sites within the UN field missions.

18  Environmental Technical Support Unit (ETSU) (GSC Environmental Technical Support Unit, Apulia, Italy)
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4.2 | CONTEMPORARY APPROACHES TO REMEDIATION OF OIL-POLLUTED 
LANDS IN THE TAIGA ZONE OF WESTERN SIBERIA19

The Russian Federation occupies one of the leading places in oil production over the 
globe. More than 70 percent of Russian Federation oil is extracted in the Taiga zone 
of western Siberia. In the 1990s oil-production enterprises of this region experienced 
a drastic increase in pipeline accidents and oil pollution of ecosystems. Under 
conditions of insufficient state control over statutory compliance of environmental 
protection legislation, this led to a significant number of oil-polluted lands that 
have not been remediated for a long time, forming a so-called “historical heritage” 
for new companies that are currently producing oil on this territory.

Oil companies have made significant efforts to restore oil-polluted lands in the 
last 10–15 years, but this problem has not been completely resolved. This is mostly 
due to the special environmental conditions of the region: the average annual 
temperature ranges from -0.1 °C to -5 °C, the average temperature in January is -18 
°C to -24 °C (with the recorded minimum as  -62 °C); the duration of the period with 
a stable snow cover achieves 180–200 days; and precipitation significantly exceeds 
evaporation. The West Siberian lowland is a vast, weakly dissected plain, which 
experienced active development of swamp formation during the Holocene epoch: 
in some areas, swamps cover 90 percent of the territory. Spills therefore occur 
mainly in wetland ecosystems, which greatly complicates the use of machinery for 
reclamation operations.

Not only were there unfavourable weather conditions, but remediation technologies 
were applied that were not appropriate for wetland soils, as they were originally 
developed for mineral soils. Basic technological solutions included surface oil 
pickup (if any), agrotechnical practices (liming, mineral fertilization), biostimulation 
(activation of native oil-oxidizing microorganisms) or bioaugmentation (application 
of commercial bio-products with oil-oxidizing action), periodic loosening and 
phyto-melioration (sowing of meadow grasses). However, for remediation of 
oil-contaminated peat bog soils, some other approaches were needed.

Peat soils have a very high sorption capacity to oil. It is therefore difficult to collect 
spilled oil even immediately after the spill, and after thickening of the oil it is 
impossible. At the same time, the concentration of oil hydrocarbons in the upper, 
most contaminated part of the peat bog soil profile can reach 80 percent or more, 
which is significantly higher than the levels   that oil-destructive microorganisms can 
consume. The above-described traditional technological solutions are therefore 
ineffective, even after being repeated for several processing seasons.

Effectiveness of reclamation is significantly increased if mechanical removal 
(shearing) of the uppermost contaminated layer (usually 10–15 cm) is performed in 
the oil-contaminated area first. In this layer, in addition to heavy oil hydrocarbons, 
a large number of resins and asphaltenes accumulate. This accumulation 
effectively seals the soil, preventing water and gas transfer. This in turn drastically 
decreases microbiological activity in the contaminated soil. At the initial stage of 
implementation of this technological operation, manual labour was used. This 
explains why despite the high efficiency of remediation on certain oil-contaminated 
sites, the total area of reclaimed land remained low. 

19  Sergey Trofimov, Ruslan Kinjaev, Olga Yakimenko (Soil Science Faculty, Lomonosov Moscow State University, Moscow, Russia)



Figure 22. Work of floating excavator (Pxhere)
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Later, when this technological operation started being conducted using excavators 
(Figure 22), it became possible to multiply the total area of oil-contaminated lands 
reclaimed annually.

After the removal of the upper layer, the concentration of oil hydrocarbons in soils 
usually does not exceed the levels   at which activity of microbial oil destructors is 
impossible; this allows using the traditional methods of biological reclamation.  
However, a further decrease in oil hydrocarbons concentration up to acceptable 
levels is still a difficult task.

One of the most important problems is the optimization of soil acid–base regime. It 
is known that the optimal pH values   for the activity of bacterial oil destructors are 
6–8. But peat soils, as a rule, have pH values of 3.5–4.5 and are characterized by high 
values   of exchangeable and pH-dependent acidity. The amount of lime that must 
therefore be added to achieve optimal pH values   is so great that it makes this task 
technically and economically unfeasible and unreasonable.

One of the ways to solve this problem is by using biodegradation agents, which 
are capable of oxidizing hydrocarbons at pH 4–4.5. For effective oil destruction, 
however, it is necessary to provide a proper aeration of bog peat soils, which is 
extremely difficult to achieve in practice. To overcome this problem, it seems 
very promising to use a combination of bioaugmentation and phyto-melioration 
technologies (Glick, 2003; Khan et al., 2013). This combination will provide a symbiotic 
interaction between microorganisms in biodegradation agent and bog plants, 
which have an ability to transport air to the root system via arenchyma, followed 
by diffusion of air oxygen into the rhizosphere, which would provide the possibility 
for oil oxidation by oil-destructive bacteria. 

In addition to providing oxygen, plants can stimulate functioning of microbiota 
in the rhizosphere via root exudates (Bais et al., 2006). In turn, bacteria can stimulate 
plant development by producing various phytohormones and anti-stress 
substances (Safronova et al., 2006), thus allowing plants to grow even in conditions 
of heavy oil pollution. Moreover, bacteria can fix molecular nitrogen, mobilize 
hydrolysable phosphates, and produce siderophores, which can also promote 
plant development. Currently, however, the biodegradation agents possessing all 
the above functions have not been produced. This makes the task of development 
and practical implementation of appropriate biodegradation agents extremely 
urgent, as is the development of seed breeding of bog plants typical for the Taiga 
zone of Western Siberia.

4.3 | AIDED PHYTOSTABILIZATION: AN EFFECTIVE REMEDIATION TECHNIQUE 
FOR TAILINGS IN SE SPAIN20,21

Mining has been present in Sierra Minera de Cartagena–La Unión (Murcia, Spain) 
for more than 2 500 years. This activity has generated large amounts of tailings 
from the exploitation of mineral sulfides (mainly ZnS and PbS). Tailing ponds were 
abandoned after the cessation of the activity in 1991 and are of great concern due to 
the risk associated with the high content of toxic metal(loid)s. 
20  S. Martínez-Martínez, R. Zornoza, J.A. Acosta, M. Gabarrón, M.D.Gómez-López and A. Faz (Sustainable Use, Management, and 
Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Spain)

21  Acknowledgements: This work was funded by the European Union LIFE+ project MIPOLARE (LIFE09 ENV/ES/000439).
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Moreover, these tailings have low fertility, low organic matter content and high acidity. 
Therefore, the establishment of native vegetation is very difficult unless organic 
and/or inorganic amendments are applied (García and Lobo, 2013). Phytoremediation 
is considered an economic and environmentally-conscious method to remediate 
polluted soils (Wan, Lei and Chen, 2016). Among phytoremediation techniques, aided 
phytostabilization can be a solution to reduce the risk of pollutant dispersion (Yang 
et al., 2016). Several amendments have been proposed to stabilize metal(loid)s in 
soils (Kumpiene, Lagerkvist and Maurice, 2008). Organic amendments and materials rich in 
carbonates have been successfully used to reduce the bioavailability of metals and 
to restore the ecological function of contaminated soils (Park et al., 2011).

The main goal of this study was to determine the effectiveness of aided 
phytostabilization applied to a tailings pond from Zn/Pb mining 30 months after 
its reclamation. The effectiveness was evaluated by monitoring physicochemical 
and biochemical properties and bioavailable metal(loid) (As, Cd, Pb and Zn) 
contents in the tailings. In addition, the metal(loid) translocation to plant species 
(root, stem and leaf ) and evolution of plant communities were also evaluated. The 
initial hypothesis was that the implementation of phytostabilization with native 
plant species with inorganic and organic amendments would decrease the mobility 
of metal(loid)s, decrease the risks for environment and public health, and increase 
soil quality and fertility and vegetation cover. Plants should accumulate high 
contents of metal(loid)s in their roots with low translocation to shoots.

The study was performed in Santa Antonieta tailings pond, located in Cartagena–
La Unión mining district. The pond has a surface of 1.4 ha. Marble waste was used 
as a source of carbonates to neutralize acidity, immobilize metals and develop soil 
structure. Pig slurry and its solid phase (manure) after physical separation was used 
as a source of organic matter and nutrients for soil development and vegetation 
establishment. 

The following species were planted in 2012: Atriplex halimus L., Cistus albidus L., 
Helichrysum stoechas (L.) Moench., Hyparrhenia hirta (L.) Stapf., Lavandula dentata 
L., Lygeum spartum (L.) Kunth., Rosmarinus officinalis L., Phagnalon saxatile (L.) Cass, 
Piptatherum miliaceum, Cynodon dactylon, Limonium caesium, Sonchus tenerrimus, and 
Atriplex halimus.

The results of the study showed that the combination of marble waste, pig slurry 
and manure was efficient for the reclamation of an acidic tailings pond by aided 
phytostabilization. The technique increased soil pH, CEC, TOC and nutrients 
content, improved soil structure and reduced the mobility of metals, mainly Cd, 
Pb and Zn up to 90–99 percent. Lygeum spartum and Piptatherum miliaceum were 
effective in phytostabilization of Pb, Zn and As, since they accumulated high metal 
concentrations in roots, with low aerial translocation. Atriplex halimus and Phagnalon 
saxatile presented phytotoxic concentrations of Zn in leaves. Therefore, the use of 
these species should be avoided in soils contaminated with high concentrations of 
Zn. 
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